Why Chooese Sizer Crusher In Limestone Crushing

Dimension	Sizer Crusher	Jaw Crusher	Cone Crusher	Impact Crusher	Hammer Crusher
Product block ratio /	particle distribution, good cubical shape and minimal fines; favorable	Medium — produces blocky fragments suitable for primary and secondary stages, particle shape generally adequate but not specialized for	Medium-High— chamber selection and liners can produce good cubical shape and consistent product for secondary/tertiary duties.		Medium — tends to generate irregular fragments and higher fines for many rock types; less favorable for highquality aggregate shapes.
Crushing efficiency (typical specific energy, kWh/t)		Typical: 0.4-1.2 kWh/t (depends on feed and operating point).	Typical: 0.6-1.8 kWh/t (large high-power machines can optimize specific energy at scale).	Typical: 0.8-2.0 kWh/t (kinetic-energy based; higher at finer target sizes).	Typical: 0.7-1.8 kWh/t (highly dependent on rotor speed and hammer configuration).
Size adjustability / control	tooth profile, roll segment configuration and feed control; certain models require	Good — discharge setting (jaw gap) adjustable; straightforward control for coarse sizing.	High — discharge setting, eccentric throw and chamber profile offer a wide and flexible range of particle size control.	blow bar configuration and impact curtain/linings provide flexible size	Moderate — screen selection, rotor speed and hammer geometry influence output gradation but distribution tends to be wide.
Maintenance expenditure & spare-part consumption (OPEX impact)	segmented replaceable tooth blocks, long wear	Low-Moderate — robust simple structure; jaw plates wear but replacement procedures are	Moderate - High — liner and mantle replacement costs are significant; major maintenance requires heavy lifting and	High — rotor, blow bars and wear liners experience rapid wear; frequent spare-part replacement increases OPEX.	High — frequent hammer and liner replacements; high labor and spare-part costs increase OPEX.

Resource utilization (yield of spec product / fines	yield of specification product; reduces downstream reprocessing and waste.	Moderate — moderate fines generation; yield depends on downstream screening/closed- circuit arrangement.	Moderate - High — when combined with proper chamber and closed-circuit design can achieve high yield.	Moderate — excellent particle shape but increased fines may reduce overall yield to spec product without additional	Lower — higher fines and flaky particles reduce usable yield for high-spec aggregates.
Equipment footprint / Structural & feed-	headroom designs facilitate retrofits and loader feed integration.	Moderate footprint; higher feed elevation often required compared with low-head units.	Large footprint and substantial foundation works for medium-to-large units.	Medium footprint, variable depending on rotor size and enclosure design.	Medium to large footprint depending on housing and maintenance access requirements.
Material stress / Crushing mechanism	cleavage (staged crushing reduces impact pulverization).	Compression/abrasion (crushing by compressive forces between fixed and moving jaw).	Predominantly compressive (crushing by high contact pressure and interparticle breakage in chamber).	shear (particle impact	High-speed impact with repeated hammer blows causing pulverization and plate shearing.
Relative power consumption (qualitative)	(competitive specific energy).	Moderate — efficient for primary/coarse duty; energy per ton depends on reduction	point; efficient at	Moderate - High — kinetic losses and wear reduce power efficiency compared with low-speed	Moderate - High — significant kinetic losses and high wear can increase energy per ton over life cycle.
Eabrication 9		Short-Moderate — smaller units	Long — heavy components and foundations extend	Moderate — rotor balancing and protective component	Moderate — rotor assembly, balancing and frequent component changes add to

large units require installation and

commissioning time for consuming but common

practice.

large installations.

foundations and

lifting equipment.

installation are time- installation & commissioning

tasks.

installation lead

time

and commissioning.

	segments; lower abrasive loss than high-speed		Moderate - High — wear on liners, mantle and bowl; wear rate increases with abrasive or hard feed.		High — hammer heads and wear plates exhibit rapid abrasion and impact wear.
Throughput capacity (typical ranges)	to multi-thousand t/h		Ranges from tens to >1000 t/h depending on model and size.	Commonly specified from ~30 to several hundred t/h for standard models; larger specialized	Typically tens to a few hundred t/h depending on model and application.
Disassembly &	roll/segment replacement simplifies on-site works.	plate replacement	High — disassembly of mainshaft, liners and bowl requires heavy—lift capability and alignment procedures.		Moderate - High — frequent component change-out and balancing required for sustained operation.
Relative feed height (headroom)	for low-infeed-height	Moderate — often requires hopper/feeder to deliver material at suitable height.	Moderate - High — typically requires hopper/feeder and adequate headroom.	Medium — installation usually requires moderate headroom and structural support.	Medium — depends on feed chute and hopper design.
Maximum recommended	medium-high strength rocks; commonly applied to limestone (typical limestone <150 MPa).	wide strength range; commonly used up to medium-high	Suitable for medium to very high compressive strength materials; robust for hard rock applications.	Generally applied to medium hardness materials; hard abrasive feeds accelerate wear significantly.	Best suited for softer to medium-hard materials; not economical for very hard, abrasive rock.

Economic assessment (CAPEX / OPEX / TCO) engineering judgement

Engineering-favorable: moderate CAPEX, low OPEX due to reduced wear and fines; lowest TCO in many limestone secondary scenarios.

Engineering judgement: relatively low-tomoderate CAPEX; stable OPEX; TCO depends on duty and production scale.

installations; OPEX moderate-to-high (liner costs); favorable TCO at very large scales or extremely hard rock.

OPEX driven by wear and fines management; TCO often higher unless particle shape is the overriding objective.

Engineering judgement: Engineering judgement: Low higher CAPEX for large moderate CAPEX; higher initial CAPEX but elevated OPEX due to wear and downtime; overall TCO often less favorable for high-duty sekundary crushing.